

Ghent University at TAC KBP

Distributed Representations of Relation Paths to Bootstrap Relation Extractors

Lucas Sterckx

Ghent University - iMinds

September 27, 2017

- 1. TAC KBP System Overview
- 2. Bootstrapping Relation extractors using Distributed Representations of Relation Paths
- 3. Future Work

Goals : Organized by NIST to promote research in he extraction of binary relations between named and numeric entities from free text.

English Slot Filling (2009-2014): extract values of specified attributes for a given entity from a large collection of natural language texts,

e.g., (Teresa Heinz, LTW_ENG_20070425, per:spouse, ?).

Cold Start KBP - Slot Filling Variant (2015-...): Predict multiple hops of slot fillers

Relation Extractors

Patterns

- Manual Engineering (Semgrex, Tokensregex, ...)
- OpenIE
- Universal Schema
- Coreferences (*-year-old, *-based, ...)

Relation Classifiers

- Linear classifier + sparse feature vectors
- Neural network sentence classifiers (LSTM, CNN, ...)

Training:

- Distant Supervision
- Semi-Supervision, Bootstrapping

► Supervision

Ensembles!

Guiding Bootstrapped Relation Extractors

Guiding Bootstrapped Relation Extractors

Introduction

Table: Examples of top-ranked patterns

Relation	Top SDP	Assessment	
top_members_employees	$PER \xleftarrow{appos}{executive} \xrightarrow{prep_of} ORG$	1	
	$PER \xleftarrow{appos}{chairman} \xleftarrow{appos}{ORG}$	1	
	$ORG \xleftarrow{nn} founder \xrightarrow{prep_of} PER$	×	
children	$PER-2 \xleftarrow{appos} son \xrightarrow{prep_of} PER-1$	1	
	$PER-1 \xleftarrow{appos} father \xrightarrow{prep_of} PER-2$	1	
	$PER-2 \xleftarrow{nn} grandson \xrightarrow{prep_of} PER-1$	×	
city_of_birth	$PER \xleftarrow{rcmod} born \xrightarrow{prep_in} LOC$	1	
	$PER \xleftarrow{nsubj}{mayor} \xrightarrow{prep_of} LOC$	×	
	$PER \xleftarrow{appos}{historian} \xrightarrow{prep_from} LOC$	×	
schools_attended	$PER \xleftarrow{nsubj}{graduated} \xrightarrow{prep_{from}} ORG$	1	
	$PER \xleftarrow{dep} student \xrightarrow{prep_at} ORG$	1	
	$PER \xleftarrow{appos}{teacher} \xleftarrow{prep_at}{} ORG$	×	
(org:)parents	$ORG-2 \xleftarrow{appos}{} subsidiary \xrightarrow{prep_of} ORG-1$	1	
	$ORG-1 \xleftarrow{appos} division \xrightarrow{prep_of} ORG-2$	1	
	$ORG-2 \xleftarrow{prep_to} shareholder \xrightarrow{dep} ORG-1$	×	

Research and Future Directions

Results

Relation	Distant Supervision (Mintz++)		SDP Filtered			SDP Guided Bootstrapping			
	Р	R	F_1	Р	R	F_1	Р	R	F_1
title	22.3	58.8	32.3	36.1	39.1	37.5	37.3	41.2	39.2
top_members_employees	50.6	63.4	56.3	51.3	63.4	56.7	63.5	62.5	63.0
employee_or_member_of	31.4	34.0	32.6	33.8	51.0	40.7	27.9	51.0	36.1
age	71.6	72.5	72.0	75.6	70.0	72.7	68.8	82.5	75.0
origin	100.0	23.0	37.4	28.5	80.0	42.0	31.7	86.6	46.4
countries_of_residence	100.0	23.0	37.4	22.4	84.6	35.4	35.2	46.1	39.9
charges	45.0	52.9	48.6	40.9	52.9	46.1	44.3	68.1	53.7
cities_of_residence	22.9	45.8	30.5	31.5	25.0	27.9	34.4	41.6	37.7
cause_of_death	30.7	36.3	33.3	29.4	45.4	35.7	33.3	45.4	38.4
spouse	50.0	45.4	47.6	50.0	45.4	47.6	71.4	45.4	55.5
city_of_death	100.0	16.6	28.5	14.2	16.6	15.3	20.0	33.3	25.0
country_of_headquarters	22.7	41.6	29.4	62.5	41.6	50.0	100.0	33.3	50.0
date_of_death	66.6	50.0	57.1	66.6	50.0	57.1	66.6	50.0	57.1
TAC-scorer	29.3	28.1	28.7	35.5	33.7	34.7	36.9	35.9	36.4

Results

60.00

Research and Future Directions

- Neural Network sentence classifiers for relation extraction ((Kim, EMNLP 2014), (Liu, ACL 2015))
- Distant supervision for neural sentence classifiers ((Zeng, EMNLP 2015), (Lin, ACL 2016))
- Column-less, Row-less Universal Schema ((Verga, AKBC 2016), (Verga, NAACL 2016))
- Standardization of candidate sets ((Adel, NAACL 2016), (Verga , NAACL 2016))
- Distant Supervision + Partial Supervision ((Angeli, EMNLP 2014), (Pershina , ACL 2014))

Research and Future Directions

. . .

14/15

Research and Future Directions

- Attention Mechanism
- Using pattern-filtered trainingdata
- Use labeled patterns for biased training objective
- Neural bootstrapping
- Vector representations of relations

Lucas Sterckx

Thank you! Questions?