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Query 
(Entity name + Document)

Alias Document retrieval Entity Linking

Relation Extraction Postprocessing

Output

Named Entity 
Recognition
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Labeled
Shortest Dependency 

Path

Embedding

Cosine Similarity

CBOW(executive,of)
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combine neural and symbolic representations

to leverage advantages of both

 [neural] vector representations,
 + Similarity, approximate inference
 -  Fails for little alignment, hard to fix mistakes

 [symbolic] efficient (“lifted”) injection of prior knowledge
 + Easy to modify
 -  Brittle, no generalization

27

 “prof_at ⇒works_for”
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Sufficient (even stricter) condition:
ordered relation embeddings
non-negative tuple embeddings

 When is rule  “prof_at ⇒ works_for” satisfied?

“compatibility” 

29



order-embeddings
in relation space

works_for

prof_at

rule   prof_at ⇒ works_for 

becomes:                                                          
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works_for

prof_at
(Riedel,UCL)

(Clinton,US-gov)

Given: training facts  
works_for(Clinton,US-Gov)
prof_at(Riedel,UCL)

order-embeddings
in relation space
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rule   prof_at ⇒ works_for 

becomes:                                                          



works_for

prof_at
(Riedel,UCL)

(Clinton,US-gov)

Given: training facts  
works_for(Clinton,US-Gov)
prof_at(Riedel,UCL)

order-embeddings
in relation space
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rule   prof_at ⇒ works_for 

becomes:                                                          



works_for

prof_at
(Riedel,UCL)

(Clinton,US-gov)

Given: training facts  
works_for(Clinton,US-Gov)
prof_at(Riedel,UCL)

order-embeddings
in relation space

33

rule   prof_at ⇒ works_for 

becomes:                                                          



works_for

prof_at
(Riedel,UCL)

(Clinton,US-gov)

implied 
by prof_at

order-embeddings
in relation space
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implied 
by prof_at

implied by 
works_for

prof_at
(Riedel,UCL)

(Clinton,US-gov)

works_for

order-embeddings
in relation space
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rule   prof_at ⇒ works_for 

becomes:                                                          



prof_at
(Riedel,UCL)

(Clinton,US-gov)

needs non-negative entity 
embedding space!

works_for

implied by 
works_for

implied 
by prof_at

order-embeddings
in relation space

36

rule   prof_at ⇒ works_for 

becomes:                                                          



works_for

prof_at

(Riedel,UCL)

(Clinton,US-gov)

1

1

needs non-negative entity 
embedding space!

in practice: even better 
with approximately

boolean embeddings

rule   prof_at ⇒ works_for 

becomes:                                                          

implied by 
works_for

implied 
by prof_at

order-embeddings
in relation space
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Differentiable mapping of                to

Options:

  

 Non-negative entity embeddings? 

 Ordered relation embeddings?   

1 additional “lifted” loss term per implication rule:
minimize   

strongest restriction, but works best!
“Approximately Boolean embeddings”

38
upper bound to 
“grounded” loss
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fraction of FreeBase training facts

lifted  (Lifted rules)

grounded (Rocktäschel et al, 2015) 

no rules (Rocktäschel et al, 2015)

39



40



41

●
●
●

○

●
●
●
●



42



43

Xkcd extended miind
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Text

Entity 
Extraction

Relation
Extraction

Resolution
(Coref)
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Query 
(Entity name + starting point)
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Query 
(Entity name + starting point)

Alias 
component

Information retrieval 
component

Entity Linking 
Component

Documents 
about entities



Relation Extraction Component
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Query 
(Entity name + starting point)

Alias 
component

Information retrieval 
component

Entity Linking 
Component

Documents 
about entities

Sentence Extraction Filler Extraction



Relation Extraction Component
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Query 
(Entity name + starting point)

Alias 
component

Information retrieval 
component

Entity Linking 
Component

Slot Filler 
Classification 
Component

Postprocessing 
component Output

Documents 
about entities

Possible 
slot fillers

Sentence Extraction Filler Extraction
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Knowledge representations

53

is_cat is_dog

Whisky 1 0

Tarzan 1 0

Snoopy 0 1

is_animal

1

1

1

Whisky SnoopyTarzan



Knowledge representations

 low-dimensional representations

neural symbolic

● can capture similarity / hierarchy 

● can be trained from raw facts 

● Difficult to incorporate prior knowledge!

“all cats are animals”

grounded in 
all entities! 54

Whisky Tarzan Snoopy



Knowledge representations

neural

●
is_cat(Tarzan).    % Tarzan is a cat

is_animal(X) :- is_cat(X)    % rule: all cats are animals

?- is_animal(Tarzan)    % is Tarzan an animal?
   yes

symbolic

“lifted” 
formulation

not suited for approximate 
inference

● ≠
?- is_animal(Whisky)
   no idea :( 55

Whisky Tarzan Snoopy
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