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Abstract

Today, online discussion has become an inte-
gral part of people’s interactions, e.g., through
commenting interfaces as well as the various
popular social media platforms. Alas, these
channels also suffer from abuse in the form
of online harassment through so-called toxic
comments. In this paper we provide a system-
atic evaluation of neural network based text
classifiers for the task of automatically detect-
ing such toxic comments and classifying them
according to the type of toxicity. We present
a large-scale analysis of the sensitivity of the
prevalent recurrent and convolutional neural
network architectures to hyperparameters. We
report a comprehensive experimental evalua-
tion of those state-of-the-art models on the
Kaggle Toxic Comment Classification Chal-
lenge dataset. Our experiments provide practi-
cal insights into the relative importance of fac-
tors such as neural network type, pretrained
embeddings, network depth, RNN cell type,
attention, regularization and sensitivity to ini-
tialization. We find that baseline convolutional
and recurrent neural networks are competitive
in terms of evaluation metrics. However, con-
volutional neural networks show less sensitiv-
ity to initialization and hyperparameter selec-
tion. A crucial aspect of neural network based
classifiers is the use of pretrained embeddings
which are most effective when trained on web-
scale corpora.

1 Introduction

With the rise of social media platforms, online
communication and discussion has become an es-
sential part of people’s internet experience. Un-
fortunately, online discussion is also an avenue for
abuse. A 2014 Pew Report highlights that 73% of
adult internet users have seen someone harassed
online, and 40% have personally experienced it
(Duggan, 2014). The threat of abuse, bullying

and harassment online means that people stop ex-
pressing themselves and give up on seeking differ-
ent opinions. Toxic comments are comments that
are rude, disrespectful or otherwise likely to make
someone leave a discussion.

Currently, online platforms struggle to effec-
tively monitor conversations for toxic behavior, to
the extent that many communities limit or com-
pletely shut down user comments. Therefore, fast
identification of toxic comments and prediction in
real time is of paramount importance, to prevent
detrimental effects of such toxic behavior on well-
intentioned internet users.

Recently, the Conversation AI team1, a research
initiative founded by Jigsaw and Google (both part
of Alphabet), is working on tools to help improve
online conversation. An area of focus for Conver-
sation AI is the study of negative online behaviors,
such as toxic comments. So far they have built a
range of publicly available models for monitoring
text served through the Perspective API (Hosseini
et al., 2017). These models are still error-prone
and do not allow users to select which types of tox-
icity they are interested in classifying (e.g., some
platforms may be fine with profanity, but not with
other types of severe toxic content).

Such text classification, in its general form, is
a classic topic for natural language processing and
an essential component in many applications, such
as web search, information filtering, topic cate-
gorization and sentiment analysis. As a result,
a wide range of machine learning methodologies
have been applied for text classification. Recent
research in the are has mostly focused on the appli-
cation of neural network (NN) architectures. The
abundance of NN architectures for text classifica-
tion includes two dominant groups: convolutional
neural networks (CNNs) and recurrent neural net-

1https://conversationai.github.io
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works (RNNs). Keeping track of literature in this
domain is challenging, and an overview of the
many architectural variants for text classification,
each with many of their specific hyperparameters,
is largely missing from literature. We try to fill this
gap, an thus hope to enable overcoming the ex-
pensive and slow development of such classifiers
for toxic comment identification. Indeed, for de-
velopers of new systems, sweeping the large hy-
perparameter spaces — even though common in
computer vision (Huang et al., 2017) — would be
prohibitively expensive. In practice, researchers
often limit themselves to well-established archi-
tecture and hyperparameter choices.

We will present an extensive experimental com-
parison of RNN and CNN based architectures and
their hyperparameters. Thus, our work has a sim-
ilar objective as work by Zhang et al. (2017) for
convolutional neural networks for text classifica-
tion and Britz (2017) for neural machine transla-
tion. We will use a recently released dataset from
the Kaggle Toxic Comment Classification Chal-
lenge2, described in the next Section 2. Further
extending the landscape of model architectures is
beyond the scope of this work: we rather provide
an analysis of the existing ones as they also show
to outperform more complex ones on many oc-
casions. An overview of the prevalent CNN and
RNN architectures is presented in Section 3. Our
main contribution is a systematic comparison of
those architectures, presented in Section 4.

From our comparison we conclude that RNN
and CNN based classifiers are competitive for the
task. However, we find that RNNs are more sensi-
tive to overfitting initialization. Pretrained embed-
dings are shown to be a crucial for NN based clas-
sifiers. Variants which are trained on web-scale
corpora of text are evaluated as most effective.
Regularization via data augmentation can provide
a boost in performance by reducing the models’
capacity to overfit on the training data. We make
all our code available online.3

2 Toxic Comment Classification
Challenge

Unfortunately, abuse and harassment online has
been shown occur increasingly frequently (Dug-
gan, 2014), especially with the rise of social me-

2https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge

3http://www.github.com/anonymized

dia platforms and the explosion of online commu-
nication. This has a detrimental effect on the ac-
tivity of well-intentioned users: indicatively, the
Wikimedia foundation found that 54% of those
who had experienced online harassment expressed
decreased participation (Wulczyn et al., 2017).
Moderation to identify and eventually block such
toxic comments would thus be most welcome, but
proves to be hard to effectively implement. De-
spite efforts to enhance the safety of online envi-
ronments based on crowdsourcing voting schemes
or the capacity to denounce a comment, in most
cases these techniques are inefficient and fail to
predict a potential toxicity (Hosseini et al., 2017).
A main limitation of current models such as the
Perspective API is that they are not yet sufficiently
reliable (i.e., precision or recall is too low), and
that usually the degree of toxicity is not deter-
mined (i.e., binary classification is often too coarse
for practical purposes).

Thus, to stimulate research on toxic comment
identification, Wulczyn et al. (Wulczyn et al.,
2017) released a dataset of discussion comments
from English Wikipedia and proposed a method-
ology that combines crowdsourcing and machine
learning to analyze personal attacks at scale.

To stimulate research on more precise and ver-
satile detection, the Toxic Comment Classifica-
tion Challenge was organized by Google and
Conversation AI, managed through Kaggle. A
crowdsourced dataset based on (Wulczyn et al.,
2017) that includes 6 toxicity sub-types (reasons
why something might be considered toxic), and
approximately 160k human labelled comments
from Wikipedia Talk pages. The labelled an-
notations are based on asking crowd-workers to
rate Wikipedia comments according to their toxic-
ity (likely to make others leave the conversation).
This dataset provides the most reliable evaluation
of toxic comment classification to date, and is suf-
ficiently large to apply powerful models such as
NN architectures.

In the challenge, participants need to build a
multi-label classification model that is capable of
detecting different types of toxicity like threats,
obscenity, insults, and identity-based hate, provid-
ing probability estimates for each sub-type, ideally
strong enough to outperform Perspective’s current
models. The dataset comprises comments from
Wikipedia’s talk page edits, which we next ana-
lyze descriptively.

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
http://www.github.com/anonymized


Training / Test

Vocabulary size 220,340
# Comments 95,851/63,948
# Tags 21,195/14,015
� Tokens per comment 80/79

Table 1: Properties of Toxic Comment Classifica-
tion dataset (� denotes the average amount).

2.1 Dataset

In this section we provide a brief exploratory data
analysis of the dataset and illustrate some key
properties of the text collection. We facilitate our
exploratory data analysis with the excellent scripts
by participants of the toxic comment classification
challenge4.

During the competition leakage of the initial test
collection was detected because of overlap with
one of the existing datasets released by Conver-
sation AI. A month into the challenge a new test
collection was released and the submission dead-
line was extended. The label distribution of the
new test collection diverted strongly from that of
the training collection and the initial test collection
due differences in annotation style, resulting in an
unreliable development of new classifiers and poor
application of existing ones. In our experiments,
we use the initial dataset, released at the start of
the Kaggle competition, which is smaller than the
final one, but offers more reliable development of
the classifiers.

Figure 1 shows the amount of labels for each
type of toxicity assigned to the comments. On av-
erage 20% of the comments in the training data re-
ceive at least one of the six tags indicating toxicity,
whereby a subset of 20 comments are marked with
all of the categories. Table 1 shows properties of
the dataset such as the amount of documents and
the vocabulary size. Figure 2 shows the distribu-
tion of the amount of tokens for varying lengths of
comments, with an average of 80 tokens per com-
ment.

3 Model architectures

In this section we present two prevalent NN archi-
tectures: convolutional and recurrent neural net-
works.

4
https://www.kaggle.com/jagangupta/
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Figure 1: Distribution of the labels.
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Figure 2: Distribution of comment length.

3.1 CNN Architectures

Convolutional neural networks (CNNs), originally
proposed by Lecun et al. (1998) are neural net-
works that model the internal structure of data
such as the 2-dimensional structure of image data
through convolutional layers, where each compu-
tation unit responds to a small region of input data
(e.g., a small square of a large image). The essence
of CNNs is to convert small regions of data into
feature vectors for use in the upper layers: a con-
volutional layer learns to transform small regions
of the data into higher level feature vectors.

The architecture proposed by Kim et al. (Kim,
2014) has become one the most applied methods
to apply CNNs to text and has shown to be effec-
tive on many occasions, achieving state-of-the art
results in sentiment classification. As a baseline
system, we apply a similar architecture to the one
described by Kim et al. (2014). Our model con-
sists of a single convolutional layer with multiple
filter sizes, followed by one fully connected layer
and a sigmoid over the six-dimensional binary la-
bel vector.

https://www.kaggle.com/jagangupta/stop-the-s-toxic-comments-eda
https://www.kaggle.com/jagangupta/stop-the-s-toxic-comments-eda


3.2 RNN Architectures

Recurrent neural networks (RNNs) (Elman, 1998)
process sequences of arbitrary length by recur-
sively applying a nonlinear transition function to
an internal hidden state vector ht and the current
input item xt.

3.2.1 RNN Types

LSTM The long short-term memory network
(LSTM) was first proposed by Hochreiter et al.
(1997) to specifically address this issue of learn-
ing long-term dependencies in vanilla RNNs. The
LSTM maintains a separate memory cell inside
it that updates and exposes its content only when
necessary. ht is a “candidate” hidden state that is
computed based on the current input and the pre-
vious hidden state ht−1. The LSTM contains three
gates: the input, forget and output gates. ct is the
internal memory or context vector of the unit. It is
a combination of the previous memory ct−1 mul-
tiplied by the forget gate, and the newly computed
hidden state h, multiplied by the input gate.
GRU A gated recurrent unit (GRU) (Cho et al.,
2014) has but two gates, a reset gate and an up-
date gate, and thus has a smaller amount of pa-
rameters. The reset gate determines how to com-
bine the new input with the previous memory, and
the update gate defines how much of the previous
memory to retain. GRUs do not possess internal
context states (ct) that differ from the exposed hid-
den state, and do not have the output gate that is
present in LSTMs. The input and forget gates are
coupled by an update gate and the reset gate is ap-
plied directly to the previous hidden state. Thus, in
a GRU, the LSTM reset gate functionality is really
split up into both the reset and update gate.
BiRNN Bidirectional RNNs encode the consid-
ered sequence (i.e., the comment) after processing
it in a forward and backward direction by a differ-
ent RNN, and concatenating the separate hidden
states.

3.2.2 Pooling

After a forward (and backward) pass through the
network, RNNs provide us with a sequence of con-
textual embeddings of the tokens in the comment.
To further reduce the dimensionality of this repre-
sentation, a pooling operation is performed. We
experiment with four different ways of merging
the contextual embeddings to a low-dimensional
comment representation. We add a single fully

connected layer on top of this representation from
the RNN.
Max-Pooling vs. Average-pooling The most
commonly applied pooling operation for RNNs
(and CNNs) is the max-pooling, which selects the
maximum value across each hidden dimension in
the sequence of RNN (or CNN) outputs. The
average-pooling operation instead calculates the
averages over the outputs.
Self-Attention Attention is used in sequence-to-
sequence models to attend over states of an en-
coder RNN, but can also be used in any se-
quence model to look back at past states. The
attention function fatt(hi, sj) calculates an un-
normalized alignment score between the current
hidden state hi and the previous hidden state sj .
Without any additional information, however, we
can still extract relevant aspects from the sen-
tence by allowing it to attend to itself using self-
attention (Lin et al., 2017). Self-attention, also
called intra-attention has been used successfully
in a variety of tasks including reading compre-
hension (Cheng et al., 2016), textual entailment
(Parikh et al., 2016), and abstractive summariza-
tion (Paulus et al., 2017).
CNN As a final method to generate single repre-
sentation from the RNN states, we use another pa-
rameterized network. We experiment with com-
bining the RNN and CNN by placing the CNN
architecture, discussed in Section 3.1, on top of
the contextual word representation generated by
the RNN instead of the word embeddings. We
place the CNN-encoder on top of the hidden states
h1, , hm of the RNN, and jointly train the whole
architecture.

3.3 Pretrained Word Embeddings

The first layer of NN architectures embeds the
one-hot token representations into a vector space
of lower dimensionality, which it then fine-tunes
through back-propagation. This layer yields word
embeddings as the weights of the first layer and
is usually referred to as the embedding layer.
Word embeddings learned without supervision
have seen tremendous success in numerous NLP
tasks in recent years. Pre-training of the em-
bedding layer using a dedicated word embed-
ding technique such as Word2Vec (Mikolov et al.,
2013) or Glove (Pennington et al., 2014) has
proven to be an effective method to distill knowl-
edge from large corpora. We collect a set of



pretrained word embeddings from various online
sources and use them to initialize the word em-
bedding layer of the classifiers. Next to the train-
ing procedure these pretrained embeddings differ
in source of text, dimension, amount of tokens
Word2vec5 Word2Vec by Mikolov et al. (2013) is
arguably the most popular of the word embedding
models. The CBOW model learns word represen-
tations by predicting a word according to its con-
text. The context is defined as a symmetric win-
dow containing all the surrounding words. The
Skip-Gram model, the most commonly applied
version of Word2Vec, uses the centre word to pre-
dict the surrounding words to the left and to the
right of the target word.

We use 300 dimensional Skip-Gram Word2Vec
embeddings pre-trained on the Google News cor-
pus (3 billion tokens).
Dependency Based Word2Vec6 Omer and Levy
(2014) generalize the Skip-Gram model, and move
from linear bag-of-words contexts to arbitrary
word contexts. Dependency-based word embed-
dings use syntactic contexts derived from automat-
ically produced dependency parse-trees.

We use the dependency based word embed-
dings released by the authors trained on English
Wikipedia with 300 dimensions.
GloVe7 Pennington et al. (2014) illustrate that
the ratio of the co-occurrence probabilities of two
words (rather than their co-occurrence probabili-
ties themselves) is what contains information and
so look to encode this information as vector differ-
ences. For this to be accomplished, they propose a
weighted least squares objective that directly aims
to reduce the difference between the dot product
of the embeddings of two words and the logarithm
of their number of co-occurrences. We use GloVe
embeddings trained on three different sources of
text: Twitter text (200 dimensions), WikiNews
(300 dimensions) and general web text from the
Common Crawl corpus (300 dimensions).

fastText8 Mikolov et al. (2018) train word
vector representations by using a combination of
tweaks that were previously not used together.
FastText uses the standard Word2Vec CBOW

5https://code.google.com/archive/p/
word2vec/

6https://levyomer.wordpress.com/2014/
04/25/dependency-based-word-embeddings/

7https://nlp.stanford.edu/projects/
glove

8https://ronan.collobert.com/senna/

model as basis and applies position-dependent
weighting, enriches the model with word n-grams
and a bag-of-character n-gram vectors.

We use fastText embeddings trained on two dif-
ferent sources of text: WikiNews (300 dimen-
sions) and general web text from the Common
Crawl corpus (300 dimensions).

3.4 Regularization

Because NN architectures are heavily parameter-
ized, they are prone to overfitting. An important
aspect of classifier development to prevent this
from happening is regularization. We apply two
established methods for regularization of the net-
work weights: dropout and data augmentation.

Dropout Dropout (Srivastava et al., 2014) is the
most applied form of regularization for NN ar-
chitectures. During training, a subset of network
nodes are removed with a probability p. At each
train iteration, only such a reduced network is
considered. When applying the network for pre-
dictions, no nodes are dropped, and all learned
weights contribute to the outputs.

Data Augmentation An alternative way to pre-
vent overfitting is data augmentation. We can in-
crease generalization of machine learning mod-
els by simply training on more data. A way to
get around the problem that more labeled data is
often not available, is to artificially generate ex-
tra data based on the available data, and add it
to the training set. We evaluate a method for
data augmentation proposed by one of the partic-
ipants of the challenge.9 The method is similar
to the back-translation proposed by Sennrich et al.
(2016). The English comments are translated to an
intermediate language using a pre-trained transla-
tion model, and afterwards translated back to En-
glish. This way, we extend the original training
with paraphrases. We use three different interme-
diate languages: German, Spanish and French. We
use the Google Translate API as translation model.
During training, we mix synthetic training data
into the original and do not distinguish between
the two.

9https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge/
discussion/48038

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/
https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/
https://nlp.stanford.edu/projects/glove
https://nlp.stanford.edu/projects/glove
https://ronan.collobert.com/senna/
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/discussion/48038
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https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/discussion/48038


4 Experiments

4.1 Experimental Setup

We develop classifiers on a development set which
contains 10% from the original training data. We
restrict the vocabulary to 120,000 tokens and
threshold the maximum length of the comments
to 500 tokens.

For CNN-based architectures we allow weights
of the embedding layer to be adapted during train-
ing, for RNN-based architectures we leave them
fixed. All RNN and CNN models were imple-
mented using Pytorch.10 We use 32 dimensional
embedding as hidden layer between the RNN and
CNN representations of the comments.

We train all models using Adam (Kingma and
Ba, 2014) with an initial learning rate of 0.001,
decayed after 2 epochs to 0.005, these rates are
tuned on the development set. We train models
for 4 (CNN) and 3 (RNN) epochs without early
stopping, overall the model were shown to overfit
after training for small number of epochs. We use
mini batches of 32 training instances.

Baselines As non-neural baseline we use a logis-
tic regression classifier trained on concatenated
token n-grams (unigrams, bigrams and trigrams)
and character n-grams (3 to 6 characters) repre-
sentations of the comments, both weighted using
their corresponding inverse document frequency
values. Next to one-hot representations we include
several features proposed by other participants in
the challenge such the amount of punctuation, the
amount of capital letters, unique words, and oth-
ers. Further details are not deemed relevant, as the
inclusion of these features does not affect perfor-
mance significantly. We do observe a large boost
for all evaluation metrics by inclusion of charac-
ter n-gram features. Table 2 shows scores for our
baseline model.

AUC LL Acc.

Bag-of-Words 97.845 0.0543 98.111
+ Character N-grams 98.502 0.0472 98.280
+ Feature Design 98.503 0.0472 98.282

Table 2: Results for logistic regression with differ-
ent feature sets.

10http://pytorch.org/

Filter Sizes # Filters AUC LL Acc.

3 64 97.810 0.0473 98.198
3 128 98.202 0.0450 98.314
3 256 98.573 0.0435 98.347
3 512 98.640 0.0431 98.347

3,4,5 64 98.353 0.0440 98.322
3,4,5 128 98.672 0.0432 98.348
3,4,5 256 98.747 0.0423 98.371
3,4,5 512 98.799 0.0431 98.376

3,4,5,6,7 64 98.616 0.0430 98.338
3,4,5,6,7 128 98.753 0.0429 98.359
3,4,5,6,7 256 98.796 0.0429 98.355
3,4,5,6,7 512 98.788 0.0442 98.368

Table 3: CNN hyperparameter selection
Type Layers Dim. AUC LL Acc.

BiGRU 1 32 98.120 0.0449 98.325
BiGRU 1 64 98.741 0.0426 98.363
BiGRU 1 128 98.721 0.0426 98.360
BiGRU 1 256 98.685 0.0435 98.316

BiGRU 2 32 98.383 0.0430 98.355
BiGRU 2 64 98.382 0.0431 98.343
BiGRU 2 128 98.467 0.0428 98.335
BiGRU 2 256 98.405 0.0437 98.346

BiLSTM 1 32 98.097 0.0457 98.271
BiLSTM 1 64 98.591 0.0429 98.362
BiLSTM 1 128 98.536 0.0419 98.390
BiLSTM 1 256 98.405 0.0437 98.346

BiLSTM 2 32 98.210 0.0442 98.296
BiLSTM 2 64 98.365 0.0429 98.343
BiLSTM 2 128 98.317 0.0431 98.350
BiLSTM 2 256 98.045 0.0447 98.320

Table 4: RNN hyperparameter selection with Max-
pooling and Glove 300-dimensional embeddings

4.2 Evaluation

We report on 3 evaluation metrics: the area-under-
the-curve (AUC), log-loss (LL) and accuracy. The
final evaluation metric used in the toxic comment
challenge was the AUC, as it is less sensitive to
the difference in probability distribution between
training and test data than the log-loss, originally
proposed as evaluation metric. The AUC is less
sensitive to absolute values of the probability es-
timates and instead emphasizes the ranking of the
probabilities relative to one another.

5 Discussion

In this section we discuss the influence of the pa-
rameters presented in previous sections of neural
network architectures for classification.

http://pytorch.org/
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Figure 3: Distribution of AUC scores when re-training the four highest scoring RNN and CNN configu-
rations multiple times with different seed values.

AUC LL Acc.

CNN (128 filters) 97.100 0.0505 98.187
+ Word2vec 98.585 0.0447 98.317
+ Dep. Word2Vec 98.056 0.0469 98.274
+ Glove Wikinews 98.580 0.0438 98.339
+ Glove Twitter 98.635 0.0435 98.342
+ Glove CommonCrawl 98.766 0.0427 98.361
+ fastText Wikinews 98.569 0.0438 98.347
+ fastText CommonCrawl 98.748 0.0423 98.362

BiGRU (2 layers, 128) 97.548 0.0556 98.166
+ Word2Vec 98.389 0.0461 98.207
+ Dep. Word2Vec 97.901 0.0559 98.312
+ Glove Wikinews 98.387 0.0460 98.243
+ Glove Twitter 98.549 0.0485 98.313
+ Glove CommonCrawl 98.636 0.0429 98.366
+ fastText Wikinews 98.388 0.0460 98.189
+ fastText CommonCrawl 98.595 0.0425 98.340

Table 5: Pretrained embeddings for CNN (128 fil-
ters, sizes 3,4,5,6,7) and BiGRU (hidden dim. of
64) hyperparameter selection.

AUC LL Acc.

Self-Attention 98.242 0.0460 98.282
Average 98.459 0.0450 98.327
CNN 98.649 0.0427 98.332
Final State 98.691 0.0432 98.361
Max-pooling 98.741 0.0426 98.363

Table 6: Pooling-layers for a single-layer BiGRU
architecture with a hidden dimension size of 64.

AUC LL Acc.

BiGRU (1-layer, 128-dim.) 98.657 0.0440 98.390
+ Dropout 98.721 0.0426 98.360
+ Data Augmentation 98.791 0.0421 98.354

CNN 98.740 0.0447 98.302
+ Dropout 98.799 0.0430 98.376
+ Data Augmentation 98.828 0.0432 98.305

Table 7: Effect of data-augmentation.

5.1 Performance of CNNs

Results for different configurations of CNNs are
shown in Table 3. We consider region sizes of 3,
4, 5, 6, and 7, and vary the amount of filter maps
per size as 64, 128, 256, and 512. The CNN archi-
tectures benefit from larger amounts of filters for
more different sizes.

5.2 Performance of RNNs

Results for different configurations of RNNs are
shown in Table 4. Overall, GRUs obtain higher
scores than LSTMs. Little improvement is ob-
tained by more layers and larger hidden states
(> 64). While some RNN configurations match
CNNs in terms of evaluation metrics, we found
training more brittle and sensitive to overfitting.

5.3 Pooling

Results for different pooling methods for RNNs
are shown in Table 6. Surprisingly, regular max-
pooling and the final hidden state stay one of the
most effective pooling strategies. We were unable
to achieve higher scores using parameterized pool-
ing layers on top of the hidden states such as self-
attention and CNNs.

5.4 Pretrained Embeddings

Results for all embeddings discussed in Sec-
tion 3.3 are shown in Table 4. We found word
embeddings to be crucial for NN architectures to
have scores competitive with the baseline linear
classifiers. The Glove and fastText embeddings
trained on very large corpora (> 6 billion tokens)
are found to be the most suited embeddings for
toxic comment classication.



5.5 Regularization

Results for dropout an data augmentation are
shown in Table 7. For RNNs we use dropout on
the embedding layer and in between the layers of
multi-layer RNNs. For CNNs we apply dropout
only on the final fully connected layer. Our stan-
dard models apply a dropout mask with probabil-
ity of p = 0.1 on the connections between the
RNN layers and on the fully connected layer at the
output. Both dropout and the data augmentation
strategy improve the AUC scores considerably.

5.6 Initialization

Reimers et al. (2017) show that reporting a single
performance score is insufficient to compare NN
based models. Authors demonstrate that the seed
for initialization has a statistically significant im-
pact on the test performance and that wrong con-
clusions can be made if performance scores based
on single runs are compared for two named entity
recognition tasks.

To study the sensitivity of the models to initial-
ization, we also retrain models multiple times us-
ing different seed values. Similarly to the findings
described above, we observe high variance of clas-
sification scores depending on initialization. Fig-
ure 3 shows violin plots similar to Reimers et al.
(2017). For both CNNs and RNNs we show the
four best performing configurations. From the vio-
lin plots it is apparent that RNN architectures show
much greater sensitivity to different initialization
seeds than CNNs.

6 Winning Entry

At the time of writing the Toxic Comment Clas-
sification Challenge has ended and authors of the
top-submission have kindly shared their method-
ology.11 We briefly describe their approach and
compare it to ours.

Their findings are similar to ours in that simple
models such as the ones presented here, perform
well for toxic comment classification. Ensembling
of models was shown to be very effective in the
competition and essential to produce top-ranking
submissions.

While we highlight the effectiveness of CNNs,
the ensemble of the winning submission consists
primarily of BiGRUs, with only a couple of CNNs

11
https://www.kaggle.com/c/

jigsaw-toxic-comment-classification-challenge/
discussion/52557

included. Reasons for this could be the second
fully connected layer on top of the pooling layer
and the increase in training data after the leakage.
No hyperparameter search is reported for CNNs.
The developers stress the use of diverse, high di-
mensional pre-trained embeddings to build effec-
tive ensembles as well. The data augmentation
strategy discussed in Section 3.4 was included in
the winning submission and reported to increase
AUC scores of the BiGRU models with 0.005.

7 Conclusion

Both the industrial and research community have
tried to efficiently identify online toxic comments,
given their important (negative) effects on in on-
line interactive user communications. We focused
on recent neural network (NN) architectures for
toxic comment classification and presented a per-
formance comparison. In particular, we focus on
CNN and RNN architectures with a selection of
different pretrained word embeddings, as well as
regularization methods. We study the effect of
network width, depth, pooling operations, embed-
dings and regularization. We summarize our find-
ings as follows:

• Simple NN architectures outperformed
feature-based methods.

• Pretrained embeddings were essential for op-
timal results with NN architectures. Pre-
trained Glove and fastText embeddings
trained on webscale text collections (6B+ to-
kens) were shown to outperform other vari-
ants.

• Shallow NN architectures outperformed
deeper ones. Depth added beyond 2 RNN
layers quickly deteriorates performance.

• Overall, RNN architectures performed
slightly worse than CNN architectures.
However, CNN architectures were less prone
to hyperparameter sensitivity and thus offers
lower risk for overfitting.

• Added complexity in pooling layer did not
improve performance.

• Regularization such as dropout and data aug-
mentation were shown to be beneficial.

We hope that these guidelines help to build
more effective toxic classification systems in the
future, at faster development time.

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/discussion/52557
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/discussion/52557
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/discussion/52557
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